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Abstract Climate state can be an important predictor of future hydrologic conditions. In ensemble
streamflow forecasting, where historical weather inputs or streamflow observations are used to generate
the ensemble, climate index weighting is one way to represent the influence of climate state. Using a cli-
mate index, each forecast variable member of the ensemble is selectively weighted to reflect the climate
state at the time of the forecast. A new approach to climate index weighting of ensemble forecasts is pre-
sented. The method is based on a sampling-resampling approach for Bayesian updating. The original hydro-
logic ensemble members define a sample drawn from the prior distribution; the relationship between the
climate index and the ensemble member forecast variable is used to estimate a likelihood function. Given
an observation of the climate index at the time of the forecast, the estimated likelihood function is then
used to assign weights to each ensemble member. The weights define the probability of each ensemble
member outcome given the observed climate index. The weighted ensemble forecast is then used to esti-
mate the posterior distribution of the forecast variable conditioned on the climate index. The Bayesian cli-
mate index weighting approach is easy to apply to hydrologic ensemble forecasts; its parameters do not
require calibration with hindcasts, and it adapts to the strength of the relation between climate and the
forecast variable, defaulting to equal weighting of ensemble members when no relationship exists. A hydro-
logic forecasting application illustrates the approach and contrasts it with traditional climate index weight-
ing approaches.

1. Introduction

Atmospheric circulation is affected by well-known global and regional climate oscillations. Seasonal to inter-
decadal variations of river flows at many locations around the world are related to these large-scale climate
patterns [Redmond and Koch, 1991; Kahya and Dracup, 1993; Piechota and Dracup, 1996; Eltahir, 1996; Pie-
chota et al., 1997; Chiew et al., 1998; Chiew and McMahon, 2002; Tootle et al., 2005; Tootle and Piechota, 2006;
Tootle et al., 2008; Aziz et al., 2010; Lu et al., 2011, among others]. The state of a climate pattern is often rep-
resented by a climate index. One of the earliest examples is the Southern Oscillation Index (SOI), a measure
of the El Ni~no Southern Oscillation (ENSO) pattern [Walker and Bliss, 1932; Troup, 1965; Trenberth, 1984].
Additional climate indexes now exist for ENSO and other major teleconnection patterns, such as the Pacific/
North American (PNA) pattern, and the North American Oscillation (NAO). Given the linkages between
streamflow and climate state, many approaches have explored the use of climate indexes for streamflow
forecasting [Piechota et al., 1998; Piechota and Dracup, 1999; Souza Filho and Lall, 2003; Karamouz and Zah-
raie, 2004; Tootle and Piechota, 2004; Araghinejad et al., 2006; Regonda et al., 2006a; Block and Rajagopalan,
2009; Gobena and Gan, 2009; Golembesky et al., 2009; Hay et al., 2009; Kalra and Ahmad, 2009; Kennedy et al.,
2009; Timilsena et al., 2009; Wei and Watkins, 2011a, 2011b; Kalra et al., 2013, among others].

For streamflow forecasting, ensemble forecasting techniques are growing in popularity [Georgakakos and
Krzysztofowicz, 2001; Schaake et al., 2007; Cloke and Pappenberger, 2009]. In most cases, an ensemble of
streamflow variables is generated by some form of resampling of historical observations. One approach
involves resampling of streamflow observations from the historical record [Souza Filho and Lall, 2003; Grantz
et al., 2005; Regonda et al., 2006b]. Another, the ensemble streamflow prediction (ESP) approach [Twedt
et al., 1977; Day, 1985], uses a hydrologic forecast model with weather inputs resampled from the historical
record. The simulations are initialized to represent the moisture conditions at the time of the forecast, and
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then the forecast model is run with alternate historical weather inputs to generate an ensemble of simu-
lated streamflow time series.

Various approaches have been used to make hydrologic ensemble forecasts conditioned on climate infor-
mation. One approach uses downscaled climate model forecasts to produce weather inputs for hydrologic
prediction [Leung et al., 1999; Wood et al., 2002; Clark and Hay, 2004; Thirel et al., 2008; Wood et al., 2005;
Wood and Lettenmaier, 2006; Gobena and Gan, 2010]. Another approach uses climate forecasts to weight
ensemble members generated from resampled weather or streamflow observations [Croley, 1996, 1997,
2000; Stedinger and Kim, 2010]. The weighting adjusts the sample of observations from the climatological
record to match forecast climate conditions.

A climate index may also be used to selectively weight ensemble members generated from resampled
observations. With climate index weighting, the weight is based on the similarity of the climate index for
the ensemble members to the climate index observed at the time the forecast. Examples of climate index
weighting for hydrologic ensemble forecasts include Smith et al. [1992], Hamlet and Lettenmaier [1999],
Werner et al. [2004], Grantz et al. [2005], Regonda et al. [2006b], Wood and Lettenmaier [2006], Moradkhani
and Meier [2010], Wang et al. [2011], and Najafi et al. [2012].

In this paper, we introduce a new approach for climate index weighting of hydrologic ensemble forecasts.
The approach is an application of Bayesian updating to the ensemble forecast probability distribution given
the climate index at the time of the forecast and is based on the sampling-resampling approach of Smith
and Gelfand [1992]. In the following sections, we describe the Bayesian climate index weighting approach
and present an example to illustrate its use in ensemble forecasting.

2. Problem Statement

The following nonparametric framework for ensemble streamflow forecasting was introduced by Smith
et al. [1992]. Let Y be a continuous random variable representing a forecast variable. Examples might
include the discharge on a specified date, the cumulative discharge volume for some period, or the mini-
mum discharge during the forecast interval. A probability distribution forecast of Y is

FðyÞ5PfY � yjng; (1)

where F(y) is the conditional distribution of Y given the state vector n. The state vector represents the state
variables for the watershed at the time the forecast is made, such as initial conditions representing the soil
moisture, snowpack, and river conditions. The state vector may also include variables representing the cur-
rent climate state, such as a climate index.

Let the sample yi; i51; . . . ;N represent an ensemble forecast of Y based on N ensemble members. Mathe-
matically, yi; i51; . . . ;N is just a sample drawn from the conditional distribution F(y). The sample can be
used to estimate the conditional distribution. Specifically, the sample estimated probability distribution
forecast is

F̂ðyÞ5
XN

i51

wi � 1½yi � y�; (2)

where wi is a nonnegative weight for the ith ensemble member and 1½yi � y� is the indicator function:

1½yi � y�5
1 if yi � y

0 if yi > y
:

(
(3)

Note that by definition, the sum of all the weights wi must equal 1.

Often in forecasting, each member of the ensemble forecast is weighted equally, on the assumption
that each realization in the sample is equally likely. In that case, the weights wi for all ensemble members
are

wi5
1
N
: (4)
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The influence of the climate state can be represented by unequal weighting of ensemble members. Climate
index weighting uses an appropriately chosen climate index available at the time of the forecast to selec-
tively weight ensemble members. Let h be the climate index at the time of the forecast. Let hi be the climate
index representative of the ensemble member yi. Climate index weighting is based on a measure of the sim-
ilarity of hi to h; ensemble members with similar climate indexes are weighted more than those with dissim-
ilar ones.

One approach for climate index weighting is to assign each ensemble member yi to a category based on hi,
then make a block adjustment [Stedinger and Kim, 2010] that assigns the same weight to ensemble mem-
bers in the same category. For example, Hamlet and Lettenmaier [1999] defined six climate categories based
on two climate indexes; the climate category was determined for the forecast period based on current
index values, and ensemble members from that category were given equal weight, whereas ensemble
members for other categories were not used (zero weight). Smith et al. [1992] and Croley [1996, 1997, 2000]
used a similar block adjustment approach based on seasonal climate outlook forecasts, weighting ensemble
members based on categories defined by properties of their historical weather inputs.

In contrast, kernel climate index weighting assigns weights based on a kernel function K(x) using

wi5
Kðjhi2hjÞXN

j51

Kðjhj2hjÞ
: (5)

As jhi2hj represents the distance between index values, appropriate choices for a kernel function are those
that produce larger values for smaller distances, such as an inverse distance or Gaussian function. As an
example, Werner et al. [2004] used hi to find the k-nearest neighbor ensemble members to h, and then
assigned nonzero weights to these members using a kernel function. Najafi et al. [2012] compared k-nearest
neighbor, formal and informal likelihood, and fuzzy clustering approaches for kernel climate index weight-
ing with ensemble forecasts.

In the next section, we propose a new approach for climate index weighting. The approach is derived from
Bayes’ theorem and is equivalent to Bayesian updating of the probability distribution forecast given the cur-
rent climate index observation.

3. Bayesian Climate Index Weighting

Bayes’ theorem defines how prior estimates of probabilities can be updated given new information (e.g., a
climate index). Let F(y) be the prior cumulative distribution for a continuous random variable Y, and let f(y)
represent the prior density function. Given an observation h, the updated (or posterior) density is given by
Bayes’ theorem to be

f ðyjhÞ5 fhðhjyÞf ðyÞ
fhðhÞ

; (6)

where fhðhÞ is the unconditional distribution of h, and fhðhjyÞ is the likelihood function (or conditional distri-
bution). In the context to be used, the prior density f(y) describes a probability forecast. The posterior den-
sity f ðyjhÞ describes the updated forecast given the observed climate index h. Analytical solutions to
equation (6) are available when the prior density and the likelihood function are normally distributed (Gaus-
sian). Luo and Wood [2008] illustrate such an example of Bayesian updating of precipitation and tempera-
ture priors using seasonal climate forecasts from multiple models. But in general, direct evaluation of
equation (6) for non-Gaussian cases is very challenging.

A far simpler approach is to apply Bayes theorem with a data sample, rather than with density functions. In
particular, let yi; i51; . . . ;N represent a sample drawn from the prior density f(y). Smith and Gelfand [1992]
present a simple and elegant resampling approach to update this sample—using the likelihood function
fhðhjyÞ—to represent a sample drawn from the posterior distribution f ðyjhÞ. Mathematically, this is done by
a weighted resampling of the original sample, where the probability of selecting the discrete sample value
yi is given by a weight wi. Smith and Gelfand [1992] show that this weight is simply
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wi5
fhðhjyiÞXN

j51

fhðhjyjÞ
; (7)

where by definition
XN

i51
wi51. As a resampling method, the approach is a variant of the popular boot-

strap resampling method [Efron and Tibshirani, 1993].

The proposed climate index weighting approach is an application of this same idea. For an ensemble fore-
cast, the sample of forecast variables based on the ensemble members yi; i51; . . . ;N, is just a sample drawn
from the prior probability distribution forecast F(y) before conditioning on the climate state. The weights wi

defined in equation (7) are simply the Bayesian climate index weights given the climate index h at the time
of the forecast; the weights update the original (equally weighted) ensemble forecast to represent a poste-
rior probability distribution forecast, as shown in equation (2). Conceptually, the weights are proportional to
the likelihood of the current climate index observation h given the ensemble member yi. More simply, from
the resampling perspective, one can think of the weight as the discrete probability of each ensemble mem-
ber outcome in a sample given the current climate index.

In the next section, we show an example using Bayesian climate index weighting for ensemble fore-
casting. The example is for the Blue Nile, where river flow volumes are strongly correlated with the El
Ni~no Southern Oscillation (ENSO) [Eltahir, 1996]. Ensemble streamflow predictions from a river forecast
model are used as a sample of the prior distribution and reweighted using an ENSO index. This exam-
ple is used to compare the Bayesian method with traditional climate index weighting methods and to
illustrate how the likelihood function in equation (7) can be estimated using parametric and nonpara-
metric approaches.

4. Nile Forecast System Example

This example examines ensemble forecasts for the Blue Nile at Diem, just over the Sudan border with Ethio-
pia. Figure 1 shows the daily flow climatology for 1992–2009. The annual flood in the summer is related to
the timing of heavy Kiremt season rains in the Ethiopian highlands [Seleshi and Demaree, 1995; Camberlin,
1997; Conway, 2000; Segele and Lamb, 2005; Block and Rajagopalan, 2007]. Annual variations in the Kiremt
rains are associated with ENSO, which affects the strength of the Indian Ocean monsoon. Ensemble fore-
casts will be generated for flood season flow volume, defined here as the cumulative flow volume from
June through October.

Eltahir [1996] found that annual variability of the Nile flood is strongly related to ENSO. Larger floods are
associated with La Ni~na conditions, whereas smaller annual floods are associated with El Ni~no. We examined
relationships between several ENSO climate indexes and the Blue Nile flood volume. The correlation with
May NINO4.0 index (20.63) was the strongest among those that would be available for a forecast issued in
June and will be used for climate index weighting.

4.1. Retrospective Forecasting With Climate Index Weighting
Retrospective forecasts (also known as hindcasts) were made for each flood season from 1992 to 2009, cor-
responding to the period with reliable flow observations for the Blue Nile at Diem. Ensemble streamflow
forecasts were generated by the Nile Forecast System (NFS) [Elshamy, 2008]. The forecasting process is illus-
trated in Figure 2. For each forecast, the model is initialized using model state variables appropriate for
basin moisture conditions on the date of the forecast; a flow data assimilation procedure within NFS accom-
plishes this task [Nile Forecast Center, 2007]. Then, the model is run to simulate streamflow time series (or
traces) for alternate input weather sequences for June through October. These weather inputs are
resampled from 50 historical years. The historical years are from 1952 to 1969, and 1977 to 2009, as histori-
cal weather inputs are not available from 1970 to 1976. The historical weather for the forecast year is not
included. The model produces daily time series of streamflows for each weather sequence, which are used
to compute the flood season flow volumes. Hence, the ensemble streamflow prediction process produces a
50-member ensemble of simulated flood volumes, each conditioned on the same initial conditions.

Climate index weighting was then used to represent the influence of climate state. For each flood volume yi

in the ensemble, a climate index hi is assigned; hi is the May NINO4.0 index for the same historical year as
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the weather inputs. The climate state at the time of the forecast h is represented by the May NINO4.0 index
for the forecast year. Climate-weighted ensemble forecasts were then determined using the Bayesian
method and two traditional climate index weighting methods.

4.2. Bayesian Climate Index Weighted Forecasts
With Bayesian climate index weighting, the original ensemble streamflow forecast from the Nile Forecast
System, yi; i51; . . . ; 50, represents a sample drawn from the prior distribution. Hence, the prior represents a
forecast conditioned on the initial basin moisture state in June of the forecast year. The next step is to
define climate weights for each ensemble member using equation (7) to condition the forecast on the
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Figure 1. Annual cycle of daily flow (in m3/s) for the Blue Nile at Diem. Daily flow time series for 1992–2010 are shown (thin lines). The
average daily flow for the 1992–2010 period is also shown (thick line). The Nile flood season, defined by the months of June–October
(shaded area), is related to seasonal rains in the Ethiopian highlands. Variability in the Nile flood from year to year is related to the El Ni~no
Southern Oscillation.

Figure 2. Ensemble streamflow prediction (ESP) forecasting process with climate index weighting postprocessing.

Water Resources Research 10.1002/2014WR016811

BRADLEY ET AL. CLIMATE INDEX WEIGHTING USING A BAYESIAN APPROACH 7386



climate state. This requires the estimation of the likelihood function fhðhjyÞ for the forecast. An example is
shown for the 2001 ensemble flood volume forecast in Figure 3.

Figure 3a shows a scatter plot of the May NINO4.0 index and the simulated flood volume for the 50 ensem-
ble members. Also shown is the May NINO4.0 index value (20.19) at the time of the June 2001 forecast. The
likelihood function fhðhjyÞ is the distribution of NINO4.0 index h conditioned on the ensemble flood volume
y. This likelihood function can be estimated by a regression model [Faber and Stedinger, 2001]:

h5�hðyÞ1e; (8)

where �hðyÞ is the expected value of the climate index h given the observation y and e is the residual model
error. At this point, one must choose a mathematical form for the likelihood function model, which introdu-
ces some subjectivity to the method. Given the sample shown in Figure 3a, we hypothesize a simple linear
model for �hðyÞ. The residual error e is assumed to be normally distributed with constant variance r2

e . For this
hypothesized model, the likelihood fhðhjyÞ is a normal density function:

fhðhjyÞ5
1ffiffiffiffiffiffi

2p
p

re
e

2
ð�hðyÞ2hÞ2

2r2
e : (9)

The estimated model fitted by linear regression is shown in Figure 3a.
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Figure 3. Ensemble forecast of 2001 flood volume for the Blue Nile at Diem. (a) The likelihood function for the relationship between the May NINO4.0 index and Nile flood volume for
the ensemble members. The likelihood function is represented with a linear regression model. The expected value of the NINO4.0 index given the flood volume �hðyÞ is shown by the
solid line. The variability of the relationship is shown by the dashed lines at 62re . The NINO4.0 index for May prior to the 2001 flood season (20.19) is indicated by the horizontal line. A
flood volume of 54.1 billion m3, as shown by the vertical line, corresponds to an expected NINO4.0 index of 20.19. (b) The Bayesian climate index weights wi for the 2001 forecasts; the
weights relative to those for equal weighting are shown. (c) The kernel and kNN climate index weights wi for the 2001 forecast; the weights relative to those for equal weighting are
shown. (d) Compares relative Bayesian climate index weights versus the kernel and kNN climate index weights.
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Using equation (9) and the NINO4.0 index of 20.19 for the 2001 forecast, Bayesian climate index weights
are estimated using equation (7) for each ensemble member yi. Figure 3b shows these weights wi, relative
to equal weighting of ensemble members; values greater than 1 apply more weight than equal weighting
to the ensemble member, and values less than 1 apply less weight than equal weighting. Note that the
Bayesian climate index weights vary smoothly with the ensemble member flood volume yi. For a given vol-
ume yi, if the expected value �hðyiÞ is close to the observed index value h at the time of the forecast (20.19),
the Bayesian climate weight is large; in other words, the ensemble outcome is more likely given the climate
state.

4.3. Traditional Climate Index Weighted Forecasts
We also produced forecasts using two traditional climate index weighting methods. The first method is ker-
nel climate index weighting [Smith et al., 1992] using a Gaussian kernel function. The Gaussian kernel has
the form

KðxÞ5 1ffiffiffiffiffiffi
2p
p

h
e2 x2

2h2 ; (10)

where h represents the kernel bandwidth parameter. The Gaussian kernel has a similar mathematical form
to the likelihood function in equation (9). However, the values depend on a distance x, defined as jhi2hj
using the climate index for the ensemble member (see equation (5)), as opposed to j�hðyiÞ2hj for the likeli-
hood function. The second method is a k-nearest neighbor (kNN) approach [Najafi et al., 2012], which uses
the distance jhi2hj to find the nearest neighbors to the climate index h at the time of the forecast. The
k nearest to h are assigned equal weights of 1=k, and all others are assigned a weight of zero. This method
is analogous to a block adjustment approach [Stedinger and Kim, 2010], but the category is defined for each
forecast based on the k-nearest neighbors.

To apply the Bayesian climate index weighting for the 2001 flood volume forecast, all that was needed was
the ensemble forecast itself, the May NINO4.0 index values associated with each ensemble member, and
the May 2001 NINO4.0 index. For the assumed likelihood function model, the required model parameters
were estimated by linear regression. In contrast, for the two traditional climate index methods, we still need
to select h for the kernel method and k for the kNN method. Rather than make an arbitrary choice, we will
‘‘stack the deck’’ in favor of the traditional methods by letting them use all the hindcasts and corresponding
flood volume observations (including the one for 2001) to find optimal parameter values. In particular, using
the hindcasts and observations, we found values of h and k that maximize the average probability forecast
skill SS, a weighted-average skill score that is analogous to the continuous ranked probability skill score
[Bradley and Schwartz, 2011]. The optimal values are 0.14 for bandwidth h, and 9 for the nearest neighbors
k. We will revisit the parameter selection issue in the next section.

Using these optimal parameters, Figure 3c shows the relative climate index weights for the kernel and kNN
methods for the 2001 forecast. Note that the kernel climate index weights vary smoothly with the ensemble
member climate index value hi. If the climate index hi is close to the index value h at the time of the forecast
(20.19), the kernel climate weight is large; ensemble members are weighted more if their climate state is
similar to that at the time of the forecast. The kNN method acts in a similar way, assigning large weights to
the 9 ensemble members with climate index values hi closest to h.

The arrangement of the plots in Figure 3 illustrates the orientation of weight assignment, which is different
for Bayesian and traditional climate index weighting. For the Bayesian method, the weights are a function
of the ensemble member outcome yi, whereas with traditional methods the weights are a function of their
climate index hi. This difference can lead to the assignment of very different weights to each ensemble
member, as illustrated by the comparison in Figure 3d. Indeed, for the 2001 forecast, there is no apparent
association between the Bayesian and traditional weights assigned. What is clear is that the traditional
methods discriminate more for climate state; a fraction of the ensemble members receive very high
weights, whereas the others receive virtually no weight.

4.4. Climate-Weighted Ensemble Probability Distribution Forecasts
Figure 4 compares the flood volume ensemble forecast probabilities for the 2001 season based on Bayesian
and traditional climate index weighting (see equation (2)). Also shown are the probabilities for equal
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weighting, which corresponds to the prior distribution before conditioning on the climate index (the origi-
nal ensemble forecast). Obviously, the methods are interpreting the near-neutral ENSO state (NINO4.0 of
20.19) quite differently. Given the current climate index, the Bayesian forecast shifts slightly upward from
the prior distribution, indicating that higher flood volumes are more likely given the climate state. In con-
trast, the kernel and kNN forecasts shift downward, indicating that much lower flood volumes are more
likely. Also, because of the higher discrimination for the traditional climate index methods, the distribution
exhibits a few long plateaus (corresponding to the fraction of ensemble members with large weights); in
contrast, the plateaus are smaller for the Bayesian method and are a more consistent length (as weights
vary smoothly with ensemble members yi).

The climate index weighting methods were used to generate 18 retrospective ensemble forecasts, one
for each flood season from 1992 to 2009. Figure 5 shows the ensemble forecasts using the Bayesian
and kernel climate index weighting methods for 2001–2009. Also shown is the original ensemble fore-
cast with equal weighting (the prior distribution before conditioning on the climate index); a shift
away from the equal weighting forecast is the predicted influence of the climate index on forecast
flood volumes. The observed flood volumes are indicated by the 3 symbol. In half the years, the two
climate-weighted forecasts shift in a similar direction (2002, 2004, 2005, 2008, and 2009). In all those
instances, the climate-weighted forecasts are accurate, shifting from the equal-weighted forecast in the
same direction of the observed flood volume. However, in the other years, the two climate-weighted
forecasts shift in opposite directions (as in the 2001 forecast illustrated in Figure 4). On some occa-
sions, the Bayesian-weighted forecast is more accurate (2001 and 2003); in others, the kernel-weighted
forecast is more accurate (2006 and 2007).

4.5. Forecast Verification Comparison
To assess the quality of the ensemble forecasts, Figure 6 shows the forecast skill for the equal-weighted
forecasts and the three climate-weighted forecasts, based on all 18 forecast periods. For any given thresh-
old y, a probability forecast that the flood volume will be below the threshold y is computed for all 18
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Figure 4. Ensemble forecasts of 2001 flood season flow volume for the Blue Nile at Diem. The estimated probability distribution is com-
puted with the ensemble members using equation (2) and appears as a series of steps at the ensemble member values. Probability distri-
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NINO4.0 index).
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ensemble forecast probability distributions (e.g., Figure 4). These are then compared to the actual outcome.
A range of flood volume thresholds y were examined, chosen as the midpoint between the 18 observed
flood volumes, to see how well the ensemble forecasts predict outcomes ranging from low to high flood
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Figure 5. Ensemble forecasts of flood volume for the Blue Nile at Diem for 2001–2009. Three ensemble forecasts are shown for each year;
one is the original forecast with on equal weighting (left box with no shading), the second is based on Bayesian climate index weighting
(middle box with blue shading), and the third is based on a kernel climate index weighting (right box with green shading). The flood vol-
ume observed that year is indicated (3 symbol). The ensemble forecasts are represented by box plots. The box shows the forecast 25%
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sents the prior distribution forecast without climate information, and with climate index weighting using the Bayesian method (blue line),
the Gaussian kernel method (green line), and the kNN method (orange line). Verification statistics are based on 18 flood volume forecasts
for 1992–2009.
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volumes [Bradley et al., 2004]. Their relative accuracy was assessed using the mean squared error (MSE) skill
score [Wilks, 2011], also commonly known as the Brier skill score [Brier, 1950]. A skill score greater than 0
indicates that the set of ensemble probability forecasts are skillful at predicting flood volume occurrences
below (or above) the threshold; that is, they are more accurate than a reference (constant) climatology
probability forecast for the threshold (i.e., the observed relative frequency of flood volumes below the
threshold based on the historical record).

Without climate information (equal weighting), the forecast models’ flood volume forecasts have modest
skill only for flood volume thresholds less than about 49 billion m3; the forecasts are less accurate than cli-
matology forecasts for higher thresholds. This means that the basin state (at this time of year) has limited
predictive ability. However, all three climate index weighting methods significantly improve forecast skill,
except again at those high flood thresholds; the lowest threshold also has negative skill for the kernel and
kNN methods. Note that seeing lower skill scores at the extremes is not uncommon; for a small verification
sample and only a few flow volume observations more extreme than the threshold, the skill score is very
sensitive to the performance in those cases. We have observed similar drops in skill for extreme events in
other ensemble forecasting examples [Bradley et al., 2004; Bradley and Schwartz, 2011]. Still, the consistent
negative skill scores for higher flood volumes does suggests that the forecast model is not predicting the
highest flood volumes accurately.

Even though the Bayesian and traditional methods interpret climate information in a different way, and
their climate-weighted forecasts are quite different (see Figures 4 and 5), the three climate index weighting
methods have comparable probability forecast skill. Not surprisingly, the skill score functions for the two tra-
ditional climate index weighting methods are more consistent with each other. Overall, in terms of the aver-
age skill SS, a weighted-average measure of the skill score functions shown, the kNN method has the
highest average skill (0.27), which results from its superior performance for the high flood volume extremes.
The Bayesian method (0.22) and the kernel method (0.21) have lower average skill. Given the way that the
methods were applied, one could conclude that both the traditional and Bayesian climate index methods
produce very different forecasts, but with comparable skill.

However, it is important to revisit how the traditional methods were applied. For these two methods, we
used the 18 retrospective forecasts (hindcasts) and their corresponding flood volume observations to
selected parameters that maximized SS. That is, the parameters were optimized for the data set and verifica-
tion metric used in our comparison; no other parameter choices would perform better. In contrast, the
Bayesian method did not utilize hindcast information at all; its parameters are defined by the assumed likeli-
hood function model and estimated only with data available at the time of the forecast (the
ensemble members and their corresponding climate index values). To be on an equal footing, we would
have had to make a (subjective) choice of parameters for the traditional methods without using hindcast
information. To illustrate, consider the following choices. For the bandwidth h, one might choose to set h5

re from the likelihood function regression, since the kernel function has a similar mathematical form
(h 5 0.43 from the 2001 forecast example). For the nearest neighbors k, one might choose to use (say) one
third of the ensemble members (k 5 17). For these subjective choices, the average skill SS drops to 0.15 for
the kernel method and 0.16 for the kNN method, both noticeably lower than for the Bayesian method
(0.22). Hence, it would be fairer to conclude that the traditional methods can produce comparable skill, if
there are hindcasts available to optimize their parameters. The fact that Bayesian climate index weighting
performs as well, but does not require any hindcast information to apply it, is a significant advantage of the
Bayesian approach.

4.6. Model Selection for Likelihood Function
Of course, there is a degree of subjectivity in Bayesian climate index weighting introduced by the choice of
a likelihood function model. For the Blue Nile forecasts, we choose a linear regression model, with its corre-
sponding likelihood function shown in equation (9). In this section, two alternate approaches for estimating
the likelihood function are examined.

The first alternative uses a nonparametric locally weighted scatter plot smoothing (LOWESS) [Cleve-
land, 1979] to define the relationship between h and y; a locally weighted estimate of the expected
value �hðyÞ and the standard deviation reðyÞ are determined for each ensemble member yi. The
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estimated relationship for the 2001 forecast is shown in Figure 7a. Using this hypothesized relation-
ship, the likelihood function is

fhðhjyÞ5
1ffiffiffiffiffiffi

2p
p

reðyÞ
e

2
ð�hðyÞ2hÞ2

2reðyÞ2 : (11)

That is, we assume that the residual model error is normally distributed, with zero mean and varying var-
iance defined by r2

e ðyÞ.

The second alternative also uses the LOWESS estimate of �hðyÞ but uses a nonparametric kernel density esti-
mator for the likelihood function. Using �hðyÞ, the residual error from the regression is

zi5hi2�hðyiÞ: (12)
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Figure 7. Ensemble forecast of 2001 flood volume for the Blue Nile at Diem. (a) The likelihood function for the relationship
between the May NINO4.0 index and Nile flood volume for the ensemble members. The likelihood function is represented with a
LOWESS regression model. The expected value of the NINO4.0 index given the flood volume �hðyÞ is shown by the solid line. The
variability of the relationship is shown by the dashed lines at 62reðyÞ. The NINO4.0 index for May prior to the 2001 flood season
(20.19) is indicated by the horizontal line. A flood volume of 54.1 billion m3, as shown by the vertical line, corresponds to an
expected NINO4.0 index of 20.19. (b) The Bayesian climate index weights wi for the 2001 forecasts; the weights relative to those
for equal weighting are shown. The weights are based on three likelihood function models: a linear regression model (as shown
in Figure 3a), a LOWESS regression model with varying standard deviation (as shown in Figure 7a), and LOWESS regression with
a Gaussian kernel density estimation.
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Using the sample of residuals zi; i51; . . . ;N, and the Gaussian kernel K(x) shown in equation (10) with band-
width h estimated from the sample of residuals using the ‘‘solve-the-equation’’ plug in method by Sheather
and Jones [1991], the kernel density estimator of the likelihood function is

fhðhjyiÞ5
1
N

XN

i51

Kðh2�hðyiÞ2ziÞ: (13)

Note that this approach makes no distributional assumption for the likelihood function. However, it does
assume that the model errors are homoscedastic (as is also assumed for the linear regression model).

Figure 7b shows Bayesian climate index weights wi for the three approaches, relative to equal weighting of
ensemble members. For the near-neutral ENSO conditions in June 2001, all three approaches weight higher
simulated flood volumes more than lower flood volumes. As noted before, the weights vary smoothly
assuming the parametric linear regression model for the likelihood function. Since the LOWESS regression
closely approximates a linear relationship, and the estimated standard error reðyÞ is nearly constant for all
simulated flood volumes, the weights are similar to those by linear regression. In contrast, the weights for
the kernel density estimator approach depart from the LOWESS weights, even though both share the same
relation for �hðyÞ. The differences are due to the shape of the conditional density function fhðhjyÞ.

Figure 8 shows the probability forecast skill for the three likelihood function alternatives based on their 18
ensemble forecasts for 1992–2009. Only slight differences are observed between the three alternatives. For
instance, the additional flexibility of the LOWESS likelihood function model increases the probability fore-
cast skill slightly over the linear regression model for most flood volume thresholds. The use of LOWESS and
a kernel density estimator for the likelihood function model also tends to improve skill slightly; the improve-
ment is most obvious for the lowest and highest flood thresholds. Yet overall, the forecasts and their quality
are robust to the likelihood function model choice in this case, and all three effectively incorporate climate
index information to improve ensemble forecasts. However, in other applications, the added flexibility of
nonparametric approaches may be necessary. As this example shows, given a sufficient number of
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Figure 8. Verification of ensemble forecasts of flood volume for the Blue Nile at Diem. The MSE skill score SS is plotted as a function of the
flood season flow volume threshold y for ensemble forecasts based on Bayesian climate index weighting with a linear regression model
(light blue line), a LOWESS regression model with varying standard deviation (dark blue line), and a LOWESS regression model with Gaus-
sian kernel density estimation (purple line). Also shown in the skill score for equal weighting of ensemble members (no climate informa-
tion). Verification statistics are based of 18 flood volume forecasts for 1992–2009. Note that the probability forecasts are skillful (SS> 0) for
most flow volume thresholds, except at low and high flow extremes. All Bayesian climate index weighted forecasts significantly increase
probability forecast skill, except for high flood volumes, where all the forecasts are not skillful.

Water Resources Research 10.1002/2014WR016811

BRADLEY ET AL. CLIMATE INDEX WEIGHTING USING A BAYESIAN APPROACH 7393



ensemble members, such approaches could be used in general without need to invoke distribution
assumptions, even when simple parametric approaches are suitable.

5. Discussion

In this section, we explore issues related to the Bayesian climate index weighting method. In particular, we
will discuss its relation to other Bayesian methods being used in forecasting, the advantages of the method
over alternate approaches, some considerations for applying the Bayesian climate index weighting method,
and its extension for use with multiple climate indexes.

5.1. Bayesian Methods in Hydrologic Forecasting
Although the Bayesian method presented is a new approach for climate index weighting, the concept is
similar to other methods employed in ensemble forecasting. In particular, Kelman et al. [1990] use a Bayes-
ian approach to assign probabilities (equivalent to weights) to a collection of streamflow scenarios (equiva-
lent to ensemble traces) as part of their sampling stochastic dynamic programming (SSDP) method. Given
an observation of streamflow volume up to some point in time, Bayes’ theorem was used to assign proba-
bilities for each streamflow scenario. As illustrated with the climate index weighting, this can be accom-
plished using a regression model relationship between historical observations and the forecast variable.
Stedinger and Kim [2010] also present an approach for assigning probabilities to ensemble members based
on a climate forecast; here the aim was to use Bayes’ theorem to adjust the historical distribution of a cli-
mate variable (the prior) to match the climate forecast distribution.

Others have used Bayesian methods with climate indexes for streamflow forecasting [Wang et al., 2009; Rob-
ertson and Wang, 2013; Bennett et al., 2014; Lima et al., 2014] or nonstationary frequency analysis, a probabil-
ity distribution forecast of a hydrologic variable conditioned on climate state [El Adlouni et al., 2007; Kwon
et al., 2008; Ouarda and El-Adlouni, 2011; Steinschneider and Brown, 2012]. In these applications, a parametric
model for the probability distribution was chosen for the hydrologic variable, and its model parameters are
predicted by Bayesian inference; the Bayesian method begins with a prior distribution of the model param-
eters and estimates the posterior distribution of model parameters conditioned on climate state. A subjec-
tive prior is often needed. Bayesian climate index weighting differs from these approaches in that it
predicts the forecast variable directly by Bayesian inference and uses an informative prior—the distribution
of the forecast variable predicted by the ensemble forecast without climate information.

Finally, Krzysztofowicz [1999] has set the entire hydrologic forecast process within a generalized Bayesian
framework. A Bayesian forecasting system has components to represent the uncertainties from the weather
inputs and the model outputs, resulting in probabilistic statements that account for the total uncertainty of
the forecasts. This approach has been extended to ensemble forecasting systems [Herr and Krzysztofowicz,
2015].

5.2. Advantages of Bayesian Climate Index Weighting
As enumerated in section 1, there are many ways to make hydrologic ensemble forecasts conditioned on
climate information. However, Bayesian climate index weighting has some unique advantages. First, the
approach has a strong theoretical basis; it assigns weights that accomplish Bayesian updating of an
(unweighted) ensemble forecast to reflect the given climate state information. The weights are easy to
interpret; they represent the relative likelihood of each ensemble member in the sample, given the
observed climate index at the time of the forecast. The method is also simple and straight forward to apply;
it can easily be added as a postprocessing step to an existing forecasting system. Compared to preprocess-
ing methods, like creating weather inputs for a hydrologic forecast model by climate forecast downscaling,
climate index weighting is far simpler and can even be more effective [Werner et al., 2004].

Given the ensemble forecast, and the climate index appropriate for each ensemble member, one can esti-
mate the likelihood function by a variety of parametric and nonparametric methods. Because the data
needed to develop a likelihood function model are contained within the ensemble forecast itself, the
method is self-calibrating for individual forecasts; hindcasts are not needed to calibrate optimal model
parameters. This self-calibrating feature means the method can be applied directly to any existing ensemble
forecasting system, regardless of whether it is brand new or has been enhanced or changed in some way
over time. Furthermore, the method is self-adapting, based on the strength of the relationship defined by
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the likelihood function. This fact is illustrated with a simple hypothetical bivariate likelihood model in Figure
9. Note that when the relationship between the ensemble members and the climate index is strong, the
weights are able to discriminate ensemble members into more (or less) likely outcomes. But in the case,
where there is no correlation of ensemble members to the climate index (the two are independent), the
method defaults to equal weighting of ensemble members (the posterior distribution equals the prior distri-
bution when there is no discernable climate signal).

5.3. Comparison With Traditional Climate Index Weighting
The Bayesian method approaches climate index weighting in a different way than traditional methods. Tra-
ditional climate index weighting assigns weights based on the similarity of the observed climate index h (at
the time of the forecast) with that for each ensemble member hi. However, the discrimination of the
weights depends on the parameter values selected for the method. To assure optimal performance, the
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Figure 9. A hypothetical examples showing the self-adaptability of the Bayesian climate index weights to the strength of the relationship
with the climate index. A bivariate normal relationship with zero means and unit variances is assumed between the climate index hi and
the forecast variable yi. The strength of the relationship depends on the correlation q. (a) The relation for different values of q. (b) The cli-
mate index weights assigned to a random sample assuming the climate index h at the time of the forecast is 1.
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selection of the weights requires parameter calibration with hindcasts and observations. This can be a tedi-
ous process, even if hindcasts are already available. Consider a forecasting system that issues ensemble
forecasts of multiple forecast variables on a monthly (or weekly) basis; the calibration process must be
repeated for each forecast variable, and each forecast issuance date. Unfortunately, if the forecast system is
enhanced or changed in some way, new hindcasts must be generated and the parameters must be cali-
brated again for the new setup. Yet even with parameter calibration in the Blue Nile example, the perform-
ance of the Bayesian method (which requires no hindcast calibration) was comparable. Clearly, a significant
advantage of the Bayesian method is that it can be applied immediately to all forecast variables for each
forecast issued; its self-calibrating and self-adapting features assure that any climate signal in forecast flows
(if it exists) will be reflected properly in the climate-weighted forecasts.

The way that the Bayesian method assigns weights is based on the relative likelihood of each ensemble
member outcome yi in the sample, as defined by the likelihood function model. Since the weights depend
on yi, they can be assigned to ensemble members even when the climate index hi is unavailable. Consider
an application where the climate index is available starting in 1950 (like the NINO4.0 index used in our
example); however, the forecasting system generates some ensemble members using historical information
available prior to 1950. Traditional climate index weighting cannot assign weights to the pre-1950 ensemble
members that have no climate index. In contrast, once a likelihood function has been estimated using the
subset of ensemble members where hi are available, the Bayesian method can use that model to assign
weights using yi for all the pre-1950 ensemble members. Hence, the Bayesian method is more versatile than
traditional climate index weighting methods, as it can assign weights to all ensemble forecast members if
there is a sufficient period of overlap with available climate index information.

5.4. Application Considerations
As the Blue Nile example shows, climate index weighting can be applied directly to ensemble forecast
model-simulated flows. From the perspective of Bayes’ theorem (equation (6)), the prior f(y) represents the
distribution of simulated flow conditioned on basin state; the updated posterior f ðyjhÞ represents the distri-
bution of simulated flows conditioned on the climate state and the basin state. However, if a forecast model
systematically underpredicts or overpredicts flows, the bias of the simulated flow needs to be accounted for
to yield a reliable forecast of the future flow. Bias-correction methods are commonly used in ensemble
streamflow forecasting to adjust the simulated flow for each ensemble member and produce an unbiased
ensemble forecast [Wood and Lettenmaier, 2006; Seo et al., 2006; Hashino et al., 2007; Bogner and Kalas, 2008;
Brown and Seo, 2010; Zhao et al., 2011; Brown and Seo, 2013; Pagano et al., 2013; Pokhrel et al., 2013]. One
could apply bias correction either before climate index weighting, and then use the bias-corrected flows to
develop the likelihood function, or more simply, after climate index weighting. To carry out bias correction,
the forecast model is typically run in a simulation mode to generate model-simulated flows for a historical
period; the simulated flows are combined with observed flows to diagnose and correct biases. Therefore,
some retrospective information is needed from the forecast model for bias correction (but not usually retro-
spective forecasts). Although bias correction was not applied in the Blue Nile example, it may be a necessary
step in other applications.

Predictability in seasonal hydrologic forecasting can come from two sources—a climate signal and memory
of the hydrologic system. If future flows depend on climate state, climate index weighting may be able to
add skill to ensemble forecasts. Some preliminary analysis is required to select an appropriate climate index
for index weighting. Many approaches have been used, including selection of the best climate index by cor-
relation analysis, or by using methods like principal component analysis with multiple indexes to define an
optimal climate predictor [Moradkhani and Meier, 2010; Najafi et al., 2012]. The best climate index may vary
by forecast calendar date, as the relationship can depend on when the forecast is issued. Hydrologic fore-
cast models can exploit memory of the hydrologic system by properly representing the current basin mois-
ture state as initial conditions at the time the forecast is made. In the Blue Nile example, the initial
conditions only provided modest skill in predicting future flows (see Figure 6); knowledge of the climate
state was a greater source of skill.

In situations where the basin moisture state offers no predictability, climate index weighting would be
more easily applied without a forecast model. A second example, using historical flow observations as the
ensemble forecast, is provided as supporting information to this paper. In this example, the historical record
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of observed flow is used as an ensemble forecast; that is, the prior distribution is the unconditional distribu-
tion (or climatology) of observed flows. The sample of observed flows is combined with historical climate
index information to estimate the likelihood function, which is then used to find weights that represent the
current climate state. Hence, the Bayesian climate index weighting method can be applied not only to
hydrologic model-generated ensemble forecasts but also with ensemble forecasts generated by resampling
observed flows from the historical record.

Furthermore, Bayesian climate index weighting need not be restricted to climate indexes. For example, if a
climate forecast model (with available hindcasts) produces skillful forecasts of future conditions, one could
construct indexes based on these forecasts. Likewise, if a measure of the basin moisture state (e.g., soil
moisture or antecedent streamflow) is predictive of future flows, it could also be used as an index. Given
these options, the ability to apply Bayesian climate index weighting with multiple indexes may be needed.

5.5. Extension to Multiple Climate Indexes
Although the Bayesian climate index weighting method was illustrated using a single climate index, the
approach could easily be extended for use with multiple climate indexes. Consider the case where the
streamflow variable Y depends on multiple climate indexes h1; h2; :::; hm. For this case, Bayes’ theorem can
be written as

f ðyjh1; h2; :::; hmÞ5 fhðh1; h2; :::; hmjyÞf ðyÞ
fhðh1; h2; :::; hmÞ

; (14)

and by extension, the weighting function can be written as

wi5
fhðh1; h2; :::; hmjyiÞXN

j51

fhðh1; h2; :::; hmjyjÞ
: (15)

Therefore, to define the weights with multiple climate indexes, a multivariate likelihood function model
must be developed. Kelman et al. [1990] illustrate such an example for streamflow forecasting. For the
special case where the climate indexes are all independent, then fhðh1; h2; :::; hmjyÞ5fh1ðh1jyÞ
fh2ðh2jyÞ � � � fhmðhmjyÞ, so the weighting function simplifies to

wi5
fh1ðh1jyiÞfh2ðh2jyiÞ � � � fhmðhmjyiÞXN

j51

fh1ðh1jyjÞfh2ðh2jyjÞ � � � fhmðhmjyjÞ
: (16)

Clearly, the case of independent climate indexes shown in equation (16) is easier to manage, as it is simpler to
estimate a likelihood function model between a single index and streamflow. But even when the multiple cli-
mate indexes are correlated (not independent), one could first apply a mathematical procedure like principle
component analysis (PCA) [Wilks, 2011] to find uncorrelated variables. Replacing the original climate indexes
with these uncorrelated variables would allow one to use equation (16) and its simpler likelihood function
model. Najafi et al. [2012] illustrates the use of PCA with multiple indexes for climate index weighting.

6. Summary and Conclusions

A Bayesian method for climate index weighting of ensemble forecasts was presented. The method is based
on a sampling-resampling approach for Bayesian updating. The original ensemble members define the prior
distribution. The relationship between the ensemble members and a climate index is then used to define a
likelihood function (or conditional distribution). Given an observation of the climate index at the time of the
forecast, the likelihood function is used to assign weights to each ensemble member. The weights define
the relative likelihood of each ensemble member given the observed climate index. The weighted ensem-
ble forecast is then used to estimate the posterior distribution—the distribution of the forecast variable
conditioned on the climate index.

The Bayesian climate index weighting method for ensemble forecasting was illustrated with an example for
the Blue Nile, where flood season flow volumes are correlated with ENSO. Ensemble streamflow predictions
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from a river forecast model were used as a sample of the prior distribution of flood volumes. Bayesian cli-
mate index weighting was contrasted with more traditional climate index weighting methods. The two
approaches assign very different weights to ensemble members, resulting in very different forecasts. Still,
the overall forecast skills are comparable, if hindcasts and observations are used to calibrate parameters for
the traditional weighting methods. However, the fact that the Bayesian method requires no hindcast infor-
mation for calibration or use is a significant advantage of the approach. This example also compared para-
metric and nonparametric approaches for estimating the likelihood function. Although a simple parametric
approach was suitable for this case, a more complex nonparametric approach, which may be necessary in
other applications, performed as well or better.

After the selection of an appropriate climate index for conditioning, the Bayesian climate index weighting
method is easy to apply, is self-calibrating using the data from the ensemble forecast, and is self-adjusting
to the strength of the relationship between ensemble members (realizations of the forecast variable) and
the climate index; if there is no relationship between the forecast variable and the climate index (the two
are statistically independent), the method defaults to equal weighting of the ensemble members. As a
result, the method can quickly be adapted to an existing ensemble forecasting system, or continue to be
utilized after the forecasting system is updated or changed, as no hindcasts are required for parameter cali-
bration. The method can also be applied directly to forecast model-simulated variables, which often are
biased predictions. The resulting posterior ensemble model-simulated distribution can be adjusted with
available bias-correction techniques to yield a reliable ensemble forecast of the forecast variable.
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